R I
\‘ Practice Coalition for Information Society

2013. 08. 27
SEDAte|EH A

gna.pcis@daum.net

5 Nt

Big Data Data

1.1 Big Data 2.1 Datal| EA
1.2 Big Data Technology 2.2 A EMI1Y
1.3 Big Data &i&} 2.3 00| A1

1.4 Apache Project

Algorithm Data mining

3.1 &2 |59 EM 4.1 Data Mining

3.2 212 |E2| EAX D] 4.2 Classification rules
3.3 BEMxlZo| tHe| MH 4.3 Clustering Rules

4.4 Association Rules
4.5 Link Analysis

§ N A A -]
Page 2 G e rEynay

Practice Coalition for Information Society

1.1 Big Data i i' 1. Big Data

.—[Big Data]

Big Data = Transactions + Interactions + Observations

BIG DATA
Sensors / RFID / Devices 5 User Generated Content
Mobile Web / Sentiment Social Interactions & Feeds
User Click Stream //
Spatial & GPS Coordinates
Web logs WEB AJB testing
External Demographics
Offer history Dynamic Pricing
Affiliate Net | Business Data Feeds
A HD Video, Audio, |
Gigabytes atio Search Marketing + FUKRO, Fmiages
ET a Speech to Text
Behavioral Targeting
Product/Service Logs
Megabytes Dynamic Funnels
SMS/MMS

Increasing Data Vari

Source: Contents of above graphic created in partnership with Teradata, Inc.

) of of
L LH

ation Society

S N HE A RIA
@N2°

Practice Coalition for Infor

Page = 3

3

1.1 Big Data . . | 1. Big Data

4
._I Big Data
\ J\&

Value from
New Data Set

e[RO
(Big Data) Innovation
Hidden
Value

S ™ H O AL DA N Of O
[] L L

H
m Practice Coalition for Information Society

Page = 4

1.1 Big Data

1. Big Data

2 (
._L Big Data Technology

Page = 5

4 . Statistics

chine

Learning Mining ‘
ext

. Minin
Analysis g

Info Lexicon
Graphics Network

\

. BigData
Technology

Pre-Procesing
Distributed
Parallel

cloud Computing

Normal-
isation

Collect information
Search Parser

éearch

engine

-~
@6 g2 adndy

Practice Coalition for Information Society

1.1 Bi_g Data

|

) (
._L Big Data Process Flow

HT

1. Big Data

TNQY

Web, SNS, system
Log, Sensor Data,
=d, o|a|X|, G4
=MN/=z e S

Open API

Sensor Aquisition

RFID Reader

=tHEE TN

NLP

= A Fillter

=2/E 3 HolH 24

Streaming, no SQL, SQL

Parsing

=tHEE MY

H| A Data
______4_4‘

M3 Data

— -

o
2T 2RO Amy
Ty | 24
24 83 Xa| T Y3
g
o £y 2. 2477
______4_4“ ______4_4“

gest Database Analyze/Data Mined
o —

Page = 6

-
S_ N H BF AP B Al A o O}
;‘\ o 2LLH
Practice Coalition for Information Society

1.1 Blg Data 1. Big Data

0.3 e b e £ AT RELTT TS IR T 638 e b b 1 2 A

« Visualization
« Infograph

I

« OLAP Tools &

« SAS,SPSS.R 3

. SQL 5

10| Ef 247} L aneMs 4

« Script Language

S/W QI X|L|0f « Log Aggregator
« NoSQL
« Hadoop

e Linux

System @Il X|L| O]

> 7‘1.'!![Af 2] Al M O Of
L L

@3 42y
Practice Coalition for Information Society

Page = 7

R e L L S B A S S S D GOl SR SO TN
n H
5 : 1, Strong-to-moderate
4. Strong commitrent, ¢ommitment, strong Advanced
flat or declining growth ! potential growth | analytics
Data marts
for analytics
2 ¥
Q ,,
7] §
Advanced data
visualization
CESS‘?I 2. Moderate |
: commitment, :
: good potential " Predictive
. analytics
£ ... AR W ... 4 S
o
wn
: Real-time
OLAP toals dashboards
= :
% | : In-database :
s 2 Hand-coded SQL ; : analytics
E 5 |.. S S— .. SE— S D— ...
s Data warehouse
= § : B e Text mining
8 DBMS built I oo
for DW Analytic database
; sandboxes 3 }
Private : Visual
: Columnar cloud : giscovery
| DBMS :
X QBMS built : Closed loop: :
G forOLTP T e ———— <4
hfll()l(:gd MapReduoa‘
wancoads SaaS Hadoop
Extreme CEP !
saL Inline analytics
‘ No-SQL DBMS
1| ERRTVSUORTSRIRUGIINS. SSUSIIPISRTUEN). . PRl Cloud e | o
g .
8. Weak commitment,
good potential growth
<| EX: TDWI Research 4thQ 2011 on B|g Data Analytlcs
o
-25% Declining -12.5% Flat 0% Good 12.5% Strong +25%
POTENTIAL GROWTH
Page = 8

Real-time Analytics
Advanced & Predictive Analytics
Advanced Data Visualization

T M H 3t AL D] AN Of O

;‘\ o 2LLH
Practice Coalition for Information Society

1.3 Big Data & L 1. Big Data

(
2 e go]
2013 Largest Database Analyze/Data Mined| ZXIE =AM 35 [T
0
over 100PB Region vaers Largest Datasgt Analyzed | % analyzed TB+
11to 100P8 (median) data
1.1to 10 PB 2%
101TB to 1Petabyte 050G
11t0 1008
11t010T8B US/Canada (156)
101 GB to 1 Terabyte (TB) 12%
11to 100GB 510 6B
11to10GB Europe (92)
0
s M Largest 2013 il [1
11to 100 MB
1.1to 10 MB M Largest 2012 Latin America (12)m |11-100 GB 17%
lessthan 1 MB AUNew Zealand (7) |5-10 GB 14%

0% 5% 10% 15% 20% 25%

=X : KDnuggets Home » Polls » Algorithms for Data Mining (Nov 2011)

« ~ A A o
Page = 9 @6 g2 adndy

Practice Coalition for Information Societ y

http://www.kdnuggets.com/index.html
http://www.kdnuggets.com/polls/index.html

1.3 Big Data ¥ 8 a . 1.Big Data

ST aE

._l Big Datal] &]

Did you use analytics in the cloud, Hadoop, EC2, etc in 20117
Yes T 14%
No T 6%

Employment type: Percent all ilvggonﬂtlrj*lnn:s
Industry analyst/consultant 55.3%|g 3

(172)

Academic researcher (85) . 273% 5.1
Student (37) o 11.9% 4.3
Government/Other (17) _ 5.5% 5.0

Regional breakdown is

US/Canada, 40.2%
Europe, 37.6%

Asia, 10.3%

Latin America, 5.8%
Africa/Middle East, 3.2%
Australia/NZ 2.9%

L

3 7‘1.|EErAr.‘ZI'\I7‘1°=I of
Page = 10 \“ Practice Coalition for 1nf.EnmIi:n SI:clci

y

1.3 Big Data & ¢ 1sigData

| A ([
.—L Algorithm J

Which methods/algorithms did you use for data analysis in 20117 [311 voters] Algorithm Academic/Student |Industry / Gov
Decision Trees/Rules (186) T 59.8 % Uplift modeling INF
Regression (180) N 57.9 % Survival Analysis 247
Clustering (163) N 52.4 % Regression 2.00
Statistics (descriptive) (149) T 4799 Visualization 1.55
Visualization (119) N 383 % Statistics 1.54
Time series/Sequence analysis (92) B 295 % Boosting 1.50
Support Vector (SVM) (89) I 286 % Time series/Sequence analysis 1.48
Association rules (89) B os6 Bagging 1.39
Ensemble methods (88) T 283 % Factor Analysis 1.32
Text Mining (86) o779 Anomaly/Deviation detection 1.29
Neural Nets (84) B 270 % Text Mining 1.27
Boosting (73) B 235 % Decision Trees 1.20
Bayesian (68) N 219% Neural Nets 1.16
Bagging (63) N 203 % Clustering 1.14
Factor Analysis (58) B 187 % Ensemble methods 1.08
Anomaly/Deviation detection (51) B 164% Social Network Analysis 0.93
Social Network Analysis (44) B 1429 Bayesian 0.92
Survival Analysis (29) B3y Associationrules 0.83
Genetic algorithms (29) M3y Support Vector -SVM 0.66

Uplift modeling (15) Bagoo, Genetic algorithms 0.60

* 4 AL B A L
Page = 11 @6 g2 adndy

Practice Coalition for Information Society

1.4 Apache Project . 1. Big Data

-

: A2 i3 15 AT LTI TAS IO B S T

2 (
_I\ Apache Project

| —
4 Y4 N/ N\ [N [)
Holg Otol'd
(Mahout)
- J
e \
olo] X2l | |go|Ef Hal(sQL)
2235l (Pig) (Hive)
a — k
NoSQL A% | - o
Hb
el | B 2p mzaeY ZaYea
= (MapReduce)
Coo;icligator (Oozzie) \) | Serialization
(Avro)
(ZooKeeper) ! ol Eb o o] Ef 22
(HCatalog)
S PAN (Hlo]= & 7|0t 2t2|)
~ p
24 I A AH
(HDFS)
g J _ J
4 N
HEY HOo[H =% g Holy =4
(chukwa, Flume, Scribe) (Sqoop, hiho)
. J \] _)
age « 12 bk ik
age m Practice Coalition for Information Society

1.4.1 Apache Hadoop

e 54 A A L AT RLTTTAT I 8 E e 4 13

-
.I\ Apache Frameworks and more... }

.a_(:he Project

» Data storage (HDFS)

[0 Runs on commaodity hardware (usually Linux)
[J Horizontally scalable

» Processing (MapReduce)

[J Parallelized (scalable) processing il sl
] Eault Tolerant Tools & Libraries
= Other Tools / Frameworks E———

[0 Data Access MapReduce API

[0 HBase, Hive, Pig, Mahout

J Hadoop Core - HDFS

[d Tools

0 Hue, Sqoop
[J Monitoring

0 Greenplum, Cloudera

¢ A AL 9] A v
Page = 13 \‘\\Jﬂﬂ”rﬂ | ™ o o

Practice Coalition for Information Society

1.4.1 Apache Hadoop 1.4 Apache Project

TR e e

’
.Ik Hadoop distribution?]

HDFS Storage

MapReduce API

Redundant (3 copies)
For large files — large blocks
64 or 128 MB / block

Batch (Job) processing
Distributed and Localized to |

Can scale to 1000s of clusters (Map) Pig
nodes Auto-Parallelizable for huge | HIV€
amounts of data HBase

Fault-tolerant (auto retries) | Others

Adds high availability and
more

T M H 3t AL D] AN Of O
Page = 14 \‘\ chli(c Coalition for 1nf.Enmli:n SI:cicE

1.1.1 Apache Hadoop 1.4 Apache Project

e S A A S AT LT ENTICN B e o4 4 A LS LT RO TT

.; Cluster HDFS (Physical) Storage J

=1 One Name Node

Name Node

» Contains web site to view cluster
information

» V2 Hadoop uses multiple Name
Nodes for HA Secondary

Name Node

sl Many Data Nodes

» 3 copies of each node by default r r
]] Data Node 1 Data Node 2 Data Node 3
ml Work with data in HDFS

» Using common Linux shell
commands

* Block size is 64 or 128 MB

Page - 15 \‘\ Practice Coali fi le ion S H

1.4.1 Apache Hadoop 1.4 Apache Project

) (
._I\ MapReduce Job — Logical View]

Map Shuffle Reduce

InkE —fill

Ink = =

Ink —1ii

Image from - http://mm-tom.s3.amazonaws.com/blog/MapReduce.png

« 7~ A} O] A o
Page = 16 @6 g2 adndy

Practice Coalition for Information Society

’ 1.4.1 Apache,_ Hadoon

ESTRLTIIATE S Crs A

-
.Ik Setting up Hadoop Development

Hadoop Binaries

Data Storage

e] N e
Local install Local
*Linux *File System
*Windows | *HDFS Pseudo-
distributed (single-
node)
N Y, N
s ; N s
Cloudera’s Demo Cloud
VM -AWS
«Need Virtualization | *Azure
software, i.e. VMware, *Others
L etc... . L
Cloud
*AWS
*Microsoft (Beta)
«Others

Page = 17

MapReduce
p
— Local
N
p
— Cloud
N

4 Apache Project

Other Libraries
& Tools

— Vendor Tools

g J

4 N\
L Libraries

g J

S AN H B A RIAIN of O}
\‘\o 2LLH

Practice Coalition for Information Society

1.4.1 Apache Hadoop

e S A A S AT ROLTTTNTICN B e 4 4 A 055

.
._Ik Common Data Sources J

Text Files —i.e. log files

* Semi-structured
* Unstructured

Statistical information —
piles of numbers, often
scientific sources

| Clickstream —
~ advertising, website
traversals

Geospatial information
—i.e. cell phone activity

GazE ey
\‘ Practice Coalition for Information Society

Page = 18

1.4.1 Apache Hadoop | 1.4 Apache Project

LTI B Cra

(
.:L Hadoop Distributed File System]

Hadoop Distributed File System (HDFS™) is the primary storage system used by Hadoop applications. HDFS
creates multiple replicas of data blocks and distributes them on compute nodes throughout a cluster to enable
reliable, extremely rapid computations.

H DFS ArCh lteCtu re Single Namespace for entire cluster

Data Coherency

- — Write-once-read-many access model
Metadata (Name, replicas, ...): — Client can only append to existing files
/homeffoo/data, 3, ...
Metadata ops Namenode Files are broken up into blocks

— Typically 128 MB block size
— Each block replicated on multiple DataNodes

Blockops
Intelligent Client
Datanodes — Client can find location of blocks
Read Datanodes — Client accesses data directly from DataNode
- Replication
— | Blocks
J
% ——V Y
Rack 1 Writ Rack 2
S n A O] A]

1.4.1 Apachem Hadoon

(
:I\ Building Blocks of Hadoop]

A fully configured cluster, “running Hadoop” means running a set of daemons, or resident programs, on the
different servers in your network. These daemons have specific roles; some exist only on one server, some exist
across multiple servers.

Hadoop Server Roles

—L o

_ Distributed Data Analytics Distributed Data Storage
The daemons include Map Reduce HDFS
= NameNode \ A

| | I | |

= Secondary

DataNode

u
JobTracker Data Node & < Data Node & > Data Node &
- TaskTracker —><Task Tracker > Task Tracker o o o Task Tracker slaves
Data Node & Data Node & Data Node &
Task Tracker Task Tracker Task Tracker

2 LLH

Practice Coalition for Information Society

« ™ A O] A o
Page » 20 6‘Jﬂﬂ I 21 Al & &f of

”1.4.1 Anaphe Hadoon

r
1| NameNode J
L
Name Node
Awesome!
metadata Filesystem
' g:; :E File.txt=A,C

DN3: AC

Name Node

Data Node N

| have
blocks:
A, C

Data Node 2 Data Node 3 O

‘DataNodel
A | C A | C A

Data Node sends Heartbeats

Every 10t heartbeat is a Block report

Name Node builds metadata from Block reports
TCP — every 3 seconds

If Name Node is down, HDFS is down

ERAD HEDLUND .com

Page = 21

| Apache Project

The most vital of the Hadoop daemons—the
NameNode .Hadoop employs a master/slave architecture
for both distributed storage and distributed
computation.

The distributed storage system is called the Hadoop
File System , or HDFS. The NameNode is the master of
HDFS that directs the slave DataNode daemons
to perform the low-level I/O tasks.

The NameNode is the bookkeeper of HDFS; it keeps
track of how your files are broken down into file blocks,
which nodes store those blocks, and the overall health
of the distributed filesystem.

The function of the NameNode is memory and I/O
intensive. As such, the server hosting the NameNode
typically doesn't store any user data or perform any
computations for a MapReduce program to lower the
workload on the machine

“oS. T H 3 AR R] AN Of Of
\‘\p ctice Coalition for lenatI:nSI-E

1.4.1 Anaphe Hadoop

e S A A S AT LT TN 18 E e o4 44 A B85 LT R

’
.Ik Secondary NameNode

Secondary Name Node

File system
metadata
File.txt=A,C
Name Node
A T
: I
1 : Its been an hour,
s : (;" give me your
econdary metadata
Name Node

Not a hot standby for the Name Node
Connects to Name Node every hour*

BRAD HEDLUND .com

Page = 22

Housekeeping, backup of Name Node metadata
Saved metadata can rebuild a failed Name Node

»The Secondary NameNode (SNN) is an assistant
daemon for monitoring the state of the cluster HDFS.
Like the NameNode, each cluster has one SNN, and it
typically resides on its own machine as well. No other
DataNode or TaskTracker daemons run on the same
server.

» The SNN differs from the NameNode in that this
process doesn't receive or record any real-time
changes to HDFS. Instead, it communicates with the
NameNode to take snapshots of the HDFS metadata
at intervals defined by the cluster configuration.

» As mentioned earlier, the NameNode is a single
point of failure for a Hadoop cluster, and the SNN
snapshots help minimize the downtime and loss of
data

Rl kih

\‘ Practice Coalition for Information Society

1.4.1 Apacne Hadoon

2 (
._I\ DataNode

F ¢ droiony
Féeto chank map
Chani 10 repdca mop

Mocdton the Jaad and hoalth
Rednd ritste repheans i neoded

Sloee chunks i O Nl
M sartep, repoet whol | huee to the NameNode

Page = 23

. 1.4 Apache Project

» DataNode

Each slave machine in your cluster will host a DataNode
daemon to perform the grunt work of the distributed
filesystem—reading and writing HDFS blocks to actual files on
the local filesystem. When you want to read or write a HDFS
file, the file is broken into blocks and the NameNode will tell
your client which DataNode each block resides in.

Your client communicates directly with the DataNode
daemons to process the local files corresponding to the
blocks. Furthermore, a DataNode may communicate with other
DataNodes to replicate its data blocks for redundancy.

S ™ H O AL DA N Of O
..\ o Z2LLH
Practice Coalition for Information Society

_~ che Project

1.4.1 Apache Hadoop

e 4 A A S AT ENTICN T e o4 A4 A B85 LT

» (
._I\ Trackers }

hadocop - namencce > JobTracker
The JobTracker daemon is the liaison between your application
MapRecuce JobTracker and Hadoop. Once you submit your code to your cluster, the
tayerr | AT JobTracker determines the execution plan by determining which
' : files to process, assigns nodes to different tasks, and monitors
HDFS Naatione all tasks as they're running.

Layss P rsammidin i
Should a task fail, the JobTracker will automatically re-
launch the task, possibly on a different node, up to a
. predefined limit of retries. There is only one JobTracker daemon
M“z‘:"d““ FaskTracker TaskTracker per Hadoop cluster. It's typically run on a server as a master
sibal node of the cluster.

DataNode 1 DstaNode

BYyar i Sttt

nagoop-datanode’ badoop-datanods?

» TaskTracker

As with the storage daemons, the computing daemons also follow a master/slave architecture: the JobTracker is the master
overseeing the overall execution of a MapReduce job and the TaskTrackers manage the execution of individual tasks on each slave
node.

Each TaskTracker is responsible for executing the individual tasks that the JobTracker assigns. Although there is a single
TaskTracker per slave node, each TaskTracker can spawn multiple JVMs to handle many map or reduce tasks in parallel. One
responsibility of the TaskTracker is to constantly communicate with the JobTracker. If the JobTracker fails to receive a heartbeat from a
TaskTracker within a specified amount of time, it will assume the TaskTracker has crashed and will resubmit the corresponding tasks to
other nodes in the cluster.

* I AL 3] A L
Page » 24 @6 g2 adndy

Practice Coalition for Information Society

1.4.1 Apache Hadoop 1.4 Apache Project

(
.:I\ MapReduce Thinking]

MapReduce programs are designed to compute large volumes of data in a parallel fashion. This requires dividing the

workload across a large number of machines.
MapReduce programs transform lists of input data elements into lists of output data elements. A MapReduce program will do

this twice, using two different list processing idioms: map, and reduce.

MapReduce Divides the Work

A MapReduce program processes data by s

manipulating (key/value) pairs in the Reduce,
general form
map: (K1,V1) = list(K2,V2) s
reduce: (K2,list(V2)) = list(K3,V3) A
Reduce,
Reduce,

2 LLH

Practice Coalition for Information Society

- ™ A O] A o
Page » 25 C‘Jﬂﬂ I 21 Al & &f of

1.4.1 Apache Hadoop

e S A A S AT LT TN 18 E e o4 13

.I[Input 1

» Input files : This is where the data for a MapReduce task is initially stored. While this does not need to be the case, the input
files typically reside in HDFS. The format of these files is arbitrary; while line-based log files can be used, we could also use a binary
format, multi-line input records, or something else entirely. It is typical for these input files to be very large -- tens of gigabytes or
more.

» InputFormat : How these input files are split up and read is defined by the InputFormat. An InputFormat is a class that provides
the following functionality:

» Selects the files or other objects that should be used for input

» Defines the InputSplits that break a file into tasks
» Provides a factory for RecordReader objects that read the file

Several InputFormats are provided with Hadoop. An abstract type is called Filelnputformat, all InputFormats that operate on files
inherit functionality and properties from this class. When starting a Hadoop job, FilelnputFormat is provided with a path containing
files to read. The FileInputFormat will read all files in this directory. It then divides these files into one or more InputSplits each. You
can choose which InputFormat to apply to your input files for a job by calling the setlnputFormat() method of the JobConf object
that defines the job. A table of standard InputFormats is given below.

InputFormat Description Key Value

TextInputFormat Default format; reads lines of text files The byte offset of the line The line contents
KeyValuelnputFormat Parses lines into key, val pairs Everything up to the first tab character =~ The remainder of the line
SequenceFilelnputFormat A Hadoop-specific high-performance user-defined user-defined

binary format

page +25 G e raynay
age W™ ;ice Coslition for Information Society

1.4.1 Apache Hadoop

e S A A S AT LT TN 18 E e o4 13

y
.I\ Input Contd.... 1

Input Splits:

An InputSplit describes a unit of work that comprises a single map task in a MapReduce program. A MapReduce program applied
to a data set, collectively referred to as a Job, is made up of several (possibly several hundred) tasks. Map tasks may involve reading
a whole file; they often involve reading only part of a file. By default, the FilelnputFormat and its descendants break a file up into 64
MB chunks (the same size as blocks in HDFS). You can control this value by setting the mapred.min.split.size parameter in hadoop-
site.xml, or by overriding the parameter in theJobConf object used to submit a particular MapReduce job

By processing a file in chunks, we allow several map tasks to operate on a single file in parallel. If the file is very large, this can
improve performance significantly through parallelism. Even more importantly, since the various blocks that make up the file may be
spread across several different nodes in the cluster, it allows tasks to be scheduled on each of these different nodes; the individual
blocks are thus all processed locally, instead of needing to be transferred from one node to another. Of course, while log files can
be processed in this piece-wise fashion, some file formats are not amenable to chunked processing. By writing a custom
InputFormat, you can control how the file is broken up (or is not broken up) into splits.

The InputFormat defines the list of tasks that make up the mapping phase; each task corresponds to a single input split. The tasks
are then assigned to the nodes in the system based on where the input file chunks are physically resident. An individual node may
have several dozen tasks assigned to it. The node will begin working on the tasks, attempting to perform as many in parallel as it
can. The on-node parallelism is controlled by the mapred.tasktracker.map.tasks.maximum parameter.

RecordReader:

The InputSplit has defined a slice of work, but does not describe how to access it. TheRecordReader class actually loads the data
from its source and converts it into (key, value) pairs suitable for reading by the Mapper. The RecordReader instance is defined by
the InputFormat. The default InputFormat, 7extlinputFormat provides a LineRecordReader, which treats each line of the input file as
a new value. The key associated with each line is its byte offset in the file. The RecordReader is invoke repeatedly on the input until
the entire InputSplit has been consumed. Each invocation of the RecordReader leads to another call to the map() method of the
Mapper.

e T H 3 AP R AN O Of
o ELLH

W Practice Coalition for Information Society

Page = 27

1.4.1 Anqphe Hadoop

e 4 A A S AT ENTICN T e o4 A4 A B85 LT

.I[Mapper }

Input list

Mapping function

Output list

The Mapper performs the interesting user-defined work of the first phase of the MapReduce program. Given a key and a value,

the map() method emits (key, value) pair(s) which are forwarded to the Reducers. A new instance of Mapper is instantiated in a separate
Java process for each map task (InputSplit) that makes up part of the total job input. The individual mappers are intentionally not provided
with a mechanism to communicate with one another in any way. This allows the reliability of each map task to be governed solely by the
reliability of the local machine. The map() method receives two parameters in addition to the key and the value:

The Context object has a method named write() which will forward a (key, value) pair to the reduce phase of the job.
The Mapper interface is responsible for the data processing step. Its single method is to process an individual (key/value) pair:
public void map(K1 key,V1 value, Context context) throws IOException

oS N H BE AR R A A o Of
Page = 28 \‘\ chli(c Nt B SI:c'\cE

1.4.1 Apache Hadoop 1.4 Apache Project

e 54 A A L AT RLTTTAT I 8 E e 4 13

 (
._I\ In Between Phases }

= Partition & Shuffle:

After the first map tasks have completed, the nodes may still be performing several more map tasks each.
But they also begin exchanging the intermediate outputs from the map tasks to where they are required by the
reducers. This process of moving map outputs to the reducers is known as shuffling.

A different subset of the intermediate key space is assigned to each reduce node; these subsets (known as
“partitions") are the inputs to the reduce tasks. Each map task may emit (key, value) pairs to any partition; all values
for the same key are always reduced together regardless of which mapper is its origin.

Therefore, the map nodes must all agree on where to send the different pieces of the intermediate data.
The Partitioner class determines which partition a given (key, value) pair will go to. The default partitioner computes
a hash value for the key and assigns the partition based on this result.

= Sort:

Each reduce task is responsible for reducing the values associated with several intermediate keys. The set
of intermediate keys on a single node is automatically sorted by Hadoop before they are presented to the Reducer.

b N A A
Page = 29 \‘\ 15 2F AF 2 Iﬁﬁur

Society

Practice Coalition for Information

e S A A S AT RO TNTICN T8 e o4 44 A L85 LT

. | Reducer J

Input list

1.4.1 Apache Hadoop 1.4 Apache Project

Reducing function

Qutput value

A Reducer instance is created for each reduce task. This is an instance of user-provided code that performs
the second important phase of job-specific work. For each key in the partition assigned to a Reducer, the
Reducer's reduce() method is called once. This receives a key as well as an iterator over all the values associated
with the key. The values associated with a key are returned by the iterator in an undefined order.

The Reducer also receives the Context object; that is used to write the output in the same manner as in
the map() method.

void reduce(K2 key, Iterable <V2> values, Context context) throws IOException

oo ™ H 3 AL 9] Al A of Of
Page = 30 \‘\ chli(c Coalition for I fErnlIl:n sL E,I

1.4.1 Apache Hadoop

e S A A S AT LT TN 18 E e o4 13

()
._I\ Combiner

Node 1 Node 2 Combiner: The pipeline showed earlier omits a processing

step which can be used for optimizing bandwidth usage by

_ _ your MapReduce job. Called the Combiner, this pass runs after

ot (e | | | ! | } et g the Mapper and before the Reducer. Usage of the Combiner is

mee ‘ ‘ e | ‘ mep ‘ | - ‘ | s ‘ ‘ i optional. If this pass is suitable for your job, instances of the

Intermediate (k. v pa\ / \ /Ml e) pais Combiner (_:Iass are run on every node that ha; run map tasks.
L Y The Combiner will receive as input all data emitted by the

Combiner Combiner Mapper instances on a given node. The output from the

Substitute intermediata (k, v) Substiute intermediate (k, v) Combiner is then sent to the Reducers, instead of the output
pars i = & n = M n
Y ¥ pairs from the Mappers. The Combiner is a "mini-reduce" process
Partitioner Partioner which operates only on data generated by one machine.

“Shuffling” procass
l hh_‘""‘"‘__:‘::..—:-—-::::__"‘\‘i
fe———— | Intermediate (k, v)
.. pairs exchanged ..
by all nodes

Example

Word count is a prime example for where a Combiner is useful. The Word Count program emits a (word, 1) pair for every
instance of every word it sees. So if the same document contains the word "cat" 3 times, the pair ("cat", 1) is emitted three times; all of
these are then sent to the Reducer. By using a Combiner, these can be condensed into a single ("cat", 3) pair to be sent to the Reducer.

Now each node only sends a single value to the reducer for each word -- drastically reducing the total bandwidth required for
the shuffle process, and speeding up the job. The best part of all is that we do not need to write any additional code to take advantage of
this! If a reduce function is both commutative and associative, then it can be used as a Combiner as well. You can enable combining in
the word count program by adding the following line to the driver:

conf.setCombinerClass(Reduce.class);

The Combiner should be an instance of the Reducer interface. If your Reducer itself cannot be used directly as a Combiner
because of commutativity or associativity, you might still be able to write a third class to use as a Combiner for your job

{ ~ AP B A -]
Page = 31 \'\' j== rﬂelﬁﬁur

Practice Coalition for Information Society

1.4.1 Apache Hadoop 4 Apache Project

o A M LS AT ROLTTTATICN 18 K e o4 A3

* %
.I\ Output 1

OutputFormat : The (key, value) pairs provided to this OutputCollector are then written to output files. The way they are written is governed by

the OutputFormat. The OutputFormat functions much like the InputFormat class described earlier. The instances of OutputFormat provided by Hadoop
write to files on the local disk or in HDFS; they all inherit from a common FileOutputFormat. Each Reducer writes a separate file in a common output
directory. These files will typically be named part-nnnnn, where nnnnn is the partition id associated with the reduce task. The output directory is set by
the FileOutputFormat.setOutputPath() method. You can control which particular OutputFormat is used by calling the setOutputFormat() method of

the JobConf object that defines your MapReduce job.

A table of provided OutputFormats is given below.

OutputFormat: Description
TextOutputFormat Default; writes lines in "key \t value" form
SequenceFileOutputFormat Writes binary files suitable for reading into

subsequent MapReduce jobs

NullOutputFormat Disregards its inputs

Hadoop provides some OutputFormat instances to write to files. The basic (default) instance is TextOutputFormat, which writes (key,
value) pairs on individual lines of a text file. This can be easily re-read by a later MapReduce task using the KeyValuelnputFormat class, and is also
human-readable. A better intermediate format for use between MapReduce jobs is the SequenceFileOutputFormat which rapidly serializes arbitrary
data types to the file; the corresponding SequenceFilelnputFormat will deserialize the file into the same types and presents the data to the next
Mapper in the same manner as it was emitted by the previous Reducer. The NullOutputFormat generates no output files and disregards any (key,
value) pairs passed to it by the OutputCollector. This is useful if you are explicitly writing your own output files in the reduce() method, and do not want
additional empty output files generated by the Hadoop framework.

= RecordWriter: Much like how the InputFormat actually reads individual records through the RecordReader implementation, the OutputFormat class
is a factory for RecordWriter objects; these are used to write the individual records to the files as directed by the OutputFormat. The output
files written by the Reducers are then left in HDFS for your use, either by another MapReduce job, a separate program, for for human inspection.

| 7 AP 3] A o
Page » 32 S

W Practice Coalition for Information Society

1.4.1 Apache HﬂdOOD

LTI B e

.:I\ Hadoop Mapreduce

1.4 Apache Project

Hadoop Mapreduce processes & data flow

map reduce
n input files m file splits m map tasks map outputs in r partitions rreduce tasks r reduce outputs
jeastuied O & Noces) (axecuted on | nodes)

S —
“.-

map sk m

B = i |

e
)
i 4

Tiles anad (hen conSGuned numriber of map ks, A FleSpi For @ raiel

mmﬂmﬂum:ﬂh Basod on Sha irput

s defined by an input S and o start and ond posiion. [y

WWM&#MMHFWIGMM m e

data the Mapper OuipuiColpcion
[rescords b nm'r-uwlquml -

In scmae cases it might not bo possible 1o oroals
oxacily m T splits,

o

Each rocond (kiy-valsh pair) nepd by the RecondRaader B
passed 1o the Mapper's map function.

The map input kery and map output key(s) need not ba
ey samep, Each call i B map funciion may resull in
2er0,0n0 oF ewen multiple cutput records.

A Partitioner dofines r partitions [typically based on the
oulpul iy) for writing thi map oulpul Focords

Oiptionally, Tor oplimizabicn, & Combara Can B used to

combing culpul reconds with the same ey balona they
ang spiled bo disk [while they ane $18 in the memony buSer)

Page = 33

Firsl, al map oulpuls for this reducs lask & copaed 16
the node's kocal filesysiem. Copying starls as scon as
|emplatid] map Sulpals Boors anlable.

Thar, all i) culpats are rmorged ard all reeords &
sorfed by thelr key, This way, reconds with the same key

B plasid sequieslially.

Each unigu king A all Gontospdndes] valuos ane passod to
the Rieduces’s neduce funciion. The reduce function calls

e QuptCollecion 1o Colsil ouAputs whach Ana IRen witlen
o e recuce output file by the RecondWriter.

S M H O AFRIA] N o O]
[+] 2 LLH

Practice Coalition for Information Society

1.4.1 Apache Hadoop - 2 lepache Project

e S A A S AT RLITTENTICN 18 £ e o4 A A S AT RLTTTAT

4
._lk Job Execution J

| Submit Job

Hadoop MapRed is based on a “pull” model where multiple
“TaskTrackers” poll the “JobTracker” for tasks (either map
task or reduce task).

The job execution starts when the client program
uploading three files: “job.xml” (the job config including
map, combine, reduce function and input/output data path,
etc.), “job.split” (specifies how many splits and range based
on dividing files into ~16 — 64 MB size), “job.jar” (the actual
Mapper and Reducer implementation classes) to the HDFS
location (specified by the “mapred.system.dir” property in
the “hadoop-default.conf” file).

Then the client program notifies the JobTracker about
the Job submission. The JobTracker returns a Job id to the
client program and starts allocating map tasks to the idle
TaskTrackers when they poll for tasks.

Each TaskTracker has a defined number of "task slots"
based on the capacity of the machine. There are heartbeat
protocol allows the JobTracker to know how many free
slots from each TaskTracker. The JobTracker will
determine appropriate jobs for the TaskTrackers based on
how busy thay are, their network proximity to the data
sources (preferring same node, then same rack, then same
network switch).

L

Map Phase Reduce Phase

The assigned TaskTrackers will fork a MapTask (separate JVM process) to execute the map phase processing. The MapTask extracts
the input data from the splits by using the “RecordReader” and “InputFormat” and it invokes the user provided “map” function which
emits a number of key/value pair in the memory buffer.

A Iy AF B A -]
Page = 34 \‘\\Jﬂﬂ rﬂelﬁﬂul

Practice Coalition for Information Society

1.4.1 Apache Hadoop 1.4 Apache Project

e S A A S AT LT TN 18 e

4
.—L Job Execution contd---. }

When the buffer is full, the output collector will spill the memory buffer into disk. For optimizing Index file Data file
the network bandwidth, an optional “combine” function can be invoked to partially reduce values
of each key. Afterwards, the “partition” function is invoked on each key to calculate its reducer varaons | | weviong % .
node index. offset | | M“ﬁﬂ'— } &
The memory buffer is eventually flushed into 2 files, the first index file contains an offset pointer artiton 2 Valua =

of each partition. The second data file contains all records sorted by partition and then by key. offset Kay length °© | 2

When the map task has finished executing all input records, it start the commit process, it first —Yatue length _ L =
flush the in-memory buffer (even it is not full) to the index + data file pair. Then a merge sort for all Value E
index + data file pairs will be performed to create a single index + data file pair. | Keylength |

The index + data file pair will then be splitted into are R local directories, one for each Mn’::{"'—

partition. After all the MapTask completes (all splits are done), the TaskTracker will notify the Value
JobTracker which keeps track of the overall progress of job. JobTracker also provide a web
interface for viewing the job status. — ey length__
When the JobTracker notices that some map tasks are completed, it will start allocating reduce Index > &@T""‘— T
tasks to subsequent polling TaskTrackers (there are R TaskTrackers will be allocated for reduce 2 ™ D;ta Vale -2
task). These allocated TaskTrackers remotely download the region files (according to the —eylenat__ u;s'h E
assigned reducer index) from the completed map phase nodes and concatenate (merge sort) ey
them into a single file. Whenever more map tasks are completed afterwards, JobTracker will notify —
these allocated TaskTrackers to download more region files (merge with previous file). In this Index >
manner, downloading region files are interleaved with the map task progress. The reduce phase is 3 [~ Data
not started at this moment yet. 3

Eventually all the map tasks are completed. The JobTracker then notifies all the allocated TaskTrackers to proceed to the reduce phase. Each
allocated TaskTracker will fork a ReduceTask (separate JVM) to read the downloaded file (which is already sorted by key) and invoke the “reduce”
function, which collects the key/aggregatedValue into the final output file (one per reducer node). Note that each reduce task (and map task as well)
is single-threaded. And this thread will invoke the reduce(key, values) function in assending (or descending) order of the keys assigned to this
reduce task. This provides an interesting property that all entries written by the reduce() function is sorted in increasing order. The output of each
reducer is written to a temp output file in HDFS. When the reducer finishes processing all keys, the temp output file will be renamed atomically to its
final output filename.

e T H 3 AP R AN O Of
o ELLH

W™ ;ice Coslition for Information Society

Page = 35

1.4.1 Apachg HaGOOD

LTI B Cra

MapReduce Example — WordCount]

e ==

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 ——» Bear, 2
Deer,1 ——— = Bear, 1
Deer Bear River ——» Bear, 1

River, 1
Car, 1
Car,1 ——» Car,3 |——» Bear,2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River (—— | CarCarRiver — » Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 —— ! Deer,2 —»

Deer, 1
Deer, 1
Deer CarBear ——» Car, 1 /
Bear, 1 River, 1 ——— River, 2

River, 1

Image from: http://blog.jteam.nl/wp-content/uploads/2009/08/MapReduceWordCountOverviewl.png

A of of
LLH

ation Society

S N HE A RIA
@N2°

Practice Coalition for Infor

Page = 36

3

1.4.2 Mahout Algorithms 1.4 Apache Project

e S A WA L TN

 (
—L Classification }

» Logistic Regression (SGD)

= Bayesian

= Support Vector Machines (SVM) (open)
= Perceptron and Winnow (open)

= Neural Network (open)

= Random Forests (integrated)

= Restricted Boltzmann Machines (open)
* Online Passive Aggressive (integrated)
» Boosting (awaiting patch commit)

» Hidden Markov Models (HMM)

v Training is done in Map-Reduce

-
Page = 37 \‘“

Practice Coalition for Information Society

1.4.2 Mahout Algorithms 1.4 Apache Project

e S A WA L TN

! user |
1 Clustering

= Canopy Clustering (integrated)

= K-Means Clustering (integrated)

= Fuzzy K-Means (integrated)

= Expectation Maximization (EM)

= Mean Shift Clustering (integrated)

= Hierarchical Clustering

= Dirichlet Process Clustering (integrated)
= Latent Dirichlet Allocation (integrated)
» Spectral Clustering (integrated)

» Minhash Clustering (integrated)

= Top Down Clustering (integrated)

T T H B ALY AN of O
° ice Coalition fi s I'-n SI:ci

GRS @ 2. L

or Informatio

1.4.2 Mahout Algorithms pache Project

e S A A S AT ROLTTTNTICN B e 4 4 A 055

.
.; Pattern Mining J

= Parallel FP Growth Algorithm
v Also known as Frequent Itemset mining
v use Map-Reduce

-
._lk Regression J

= Locally Weighted Linear Regression (open)

p
._l Dimension reduction }

* Principal Components Analysis (PCA) (open)
» Independent Component Analysis (open)
= Gaussian Discriminative Analysis (GDA) (open)

oo ™ H 3 AL 9] Al A of Of
Page = 39 \‘\ chli cccccc ition for Inform atli:n SI:c'\cly

2.1 Data_l =4

&

.| nt=o| G

~ N\ ™
N TAE ZIEZ2 I—|9_|E| My
~ & Lot = o . O
8¢ Ho/H _ GO[E{H|0]A, AT CA|E S
\ J L y,
~ N\ ™
axs gojy | | 2EE PES XD e HEAM HErEE, 270t 5 BHE Be
- XML, HTML &
\ J \\ J
~ N\ ™
N I™E THERZ XOo| & QX UL %
H|E ™ OOl ool Aozl |_|017MA| ENS OO O|X| ECIAF SMAME =
T'__-I I-EI7-|| | = TI— | |-I = | | |I O O O I:IOOEO
\ J \\ J
(0
B n=osw |

. N\ (. . \

o RE(eAty) || A= EE

(Quantitative Data) 1) O|4Atd X} =& (Discrete Data) A 2 Q= KR
9) \2) A =5 X}&(Continuous Data) : & &= Q= XI&)
e N\ ™

™ X2 (EXA) N

=01 SIS T o EMQ| HH=&ozol AEBg|] AKHMozZL £X0 x| k= X

(Qualltatlve Data) = O | [i O—EI_ :I'Ll_El—l— T |—|—§|_ = o | El I S |'E
\ J L y,

P 7‘1.‘!.‘Zlf\rllf\lﬂl°‘|°l
ELLH

P ctice Coalition for Information Society

Page = 40

2.1 Data_l =

.I\ — i |

e EH(ETY) A= FHA=E
s
A ME(E)AEE sUHE HEHE
. %”J**EOI =48 2
=9 = G ﬁE, <At 37|12 é*EH’%* Xtoloff tHsiM = 2|7t = o
_o+7l °I°J 712 _ x gty o=z %74I7|i'101|
Hlw 7t 7ts Sps Marc|= X
HEkle H
= O O O O
=2 X O O O
S7tA X X O O
HOlgH X X X @)
H| W B 2ol 2R T fH|w ragzLlpmi 7|8
A= AL = =>< =)<+ - =+ -*/
_ _ 7|51
Yool 573 = 2lgr S Ry oc Eﬂ
- O
YR = T, 0|} = 2) | MBE(FC =1, BE =2 A& X Q) -
=\ 1] o] o T ' o
T - - < s X} TVA x-l El -'H'- 1 711 EE#I
0j ERG LTS sitt=3) ek, 0 Sy B
MolSHD, XY § SR ERS AR & S EUES

N
‘e M H ZHAF R A A O Of
Page = 41 “\ chli(e Coalition for 1nﬁEnatIi:n SI;cieE

[
N

|

~

ANOVA

0z

i
I

1%

Page = 42

< Hl
— ox —
g
_ o
m g8
49
ol &
B
2 HEAN
y v
oEHEN 2N

.
P R kih

Practice Coalition for Information Society

| GlojE | =0 | }
e ALy SHEs oAt ZpiL 42T g 32
CI&B Sgts ~ . = -
(Continuous o = et o S Crnesfeaton) 2 W2l Clustering)
Independent Variable) Tr =T
O| At E2IE A . .
([;ilgc%te_l == 0f| = (Forecasting) 0f| =(Forecasting) 2713H(Clustering)
2 =2 (Classification) 2 = (Classification) 9

Independent Variable)
HEY S
(Categorical
Independent Variable)

» 0 =(Forecasting)

= F(Classification)

el

2 2}(Clustering)
= A3 (Association)
= A=M(Sequencing)

= A/ (Link Analysis)

Page = 43

A2 (Association)
E & (Classification) £ J(Classification) ! (Sequencing)
)

& HolHAUe WES 7[Hez O2iE o= (O +=20=)

i
==

U™ AT CHst EY Ho|E S8l 25 U 222 =2 (0f: O|Est 17h)

THEHQ EHS 37t= At2ES2 25 02| o= EM0| Uigt HEE 7HX|X| Z=Ct= EoA
BSOS (0 : fAF S AEHol #2)

SAOf EHASH AFZAZEO] AT A S EFA (0f: MEFFL S| MESO 2A 1Y)

ATt AX0| AZHtime)2| 7HE 2 M IISHY A|A D(time series)Of| [HE I HZ0| Mz AL S EHAM
O 384E A0 CHgt Et= HHE)

2o HE 4t 7t ZAE 3 (0fl: SNSO|A ZHA 2 A)

G yeanannaY

™S . ice Coalition for Information Seciety

B 2oas vs o |
H7|E g 29
O(1) ey A= Q| 20| Z7ISIEHEtE €2 AlZhks 2T
O(log n) 20Y nO| S7tet0l| 2t log n B A[ZEO| &7t
O(n) ey n S7F Al AlZte HIHSHM 57t s et X2 & Ste 8%
O(n log n) M2 nO| 2H| = SO{LIH A[ZH2 2H|ELC} 9f 2t ST}
O(n"2) gy O|l5F=
O(n”3) 2y HEFE
0@"n) x4 o|zxt2 0| tat A7t 33| St
O(n!) HED g

X big-ohTE 7| 0] o/t A nE|Fo| 43 A|ZH H I
O(1) < O(logn) <O(N) <O(nlogn) <O(N%2) < O(n®) < O(2") < O(n!)

oty J9
= 5 Q] g f(n)t g(n)O] FOHAMZM 2= n >= ni0f| CHSIOY
If(n)] <= clg(n)|& BFESt= A= cQf n10| +IH0P1| f(n) = O(g(n))
= HOIE 0|85l 2 T(n)= S YsIH Ef%ﬂf Z

F(O17]M mit ¢ = 08 27t L= 5= ACH
|

C
=
n=2¢=3 O n>=20 Ci5} n2+n+1<— 3n2 & Q=

\ Iy AL 9] A o
Page = 44 \‘\\ 18 2t ml'elﬁﬂhy.'

e Coalit i ation 5

3 Algorithm

! > 0% >

= Apriori Algorithm (0j])

= | =g | Zeol 2
1,000 2 499,500
1,000 4 41,417,124,750
1,000 6 1,368,173,298,991,500
1,000 8 24,115,080,524,699,400,000
1,000 10 263,409,560,461,970,000,000,000

L H

Practice Coalition for Information Society

« 7~ A} O] A o
Page = 45 @6 g2 adndy

runtime(in seconds)

Page = 46

450
400
350
300
250
200
150
100

50

UCP-Apriori —w»—

- UApriori —+—

UH-mine ——

UFP-tree —e—
UCFP-tree

2040 80
Number of Transactions(K)

160

a) Runtime
Figure 6:

320

memory(in % of 2G)

50

40

30

20

10

3 Algorithm

Wﬁ

UCP-Apriori —w—
UApriori —+—
UH-mine —¢—
UFP-tree —e—

UCFP-tree

|

20 40

80

160

320

Number of Transactions(K)

b) Memory

\ﬁﬂﬂ’\rﬂf\lﬁﬂﬂ

Scalability Comparison

Practice Coalition for Information Societ y

32 €1cl82] ESKc]

LTI B e

.:I\ Hadoop Mapreduce

3 Algorithm

Hadoop Mapreduce processes & data flow

map

reduce

n input files m file splits

Tha JobClierd definos the file splits basod on the input
fies e the conSiguned numiber of map tasks. A FleSpii
s defined by an input S and o start and ond posiion.
The RecordeiRadder than uses the FleSplit 1o mead the
daka [neconds) from the cormesponding input Tl

In scmae cases it might not bo possible 1o oroals
oxacily m T splits,

Page = 47

S —
“.-

-,

= }i

T i |

m map tasks
jeastuied O & Noces)

map outputs in r partitions

-

map sk m

e
)

(_"'":H“

Each rocond (kiy-valsh pair) nepd by the RecondRaader B
passed 1o the Mapper's map function.

i
*fr
]

o

The map input kery and map output key(s) need not ba
ey samep, Each call i B map funciion may resull in
2er0,0n0 oF ewen multiple cutput records.

A Partitioner defines r particns basad on tha
oulpul iy} for writing ha map oulpul rocoeds

Optioraly, Tor oplimization, @ Combirms can b uied Lo
combing culpul reconds with the same ey balona they
ang spiled bo disk [while they ane $18 in the memony buSer)

rreduce tasks
paxacuted on [nodes)

rreduce outputs

Firgl, all map oulpubs fod this rbducs ladk bhe Sopeed 15
Copying

the node's kocal filesysiem. siars a5 SOON &S
|emplatid] map Sulpals Boors anlable.

Thar, all mag culpuls ane monged ard all fecords an
sorfed by thelr key, This way, reconds with the same key
B plashd sequesnlially.

Each uniguiy kivy Snd all SHFeapanding valuds ard passed 1o
thee Reduces’s reduce function. The reduce function calls

e QuptCollecion 1o Colsil ouAputs whach Ana IRen witlen
o e recuce output file by the RecondWriter.

T ™ ALD AN Of Of
o ELLH

Practice Coalition for Information Society

3.2 211d|&0| S4H4] . 3 Algorithm

LTI B Cra

(

_L MapReduce Example — WordCount]

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 ——» Bear, 2
Deer,1 ——— = Bear, 1
Deer Bear River ——» Bear, 1

River, 1
Car, 1
Car,1 ——» Car,3 |——» Bear,2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River (—— | CarCarRiver — » Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 —— ! Deer,2 —»

Deer, 1
Deer, 1
Deer CarBear ——» Car, 1 /
Bear, 1 River, 1 ——— River, 2

River, 1

Image from: http://blog.jteam.nl/wp-content/uploads/2009/08/MapReduceWordCountOverviewl.png

€ ~ A A o
Page = 48 ‘\\JEE rﬂalﬂﬁul

Practice Coalition for Information Society

32 €1cl82] ESKc]

e S A A S AT RO TNTICN B e o4 4 M 055 A

.I\ N3l : Variance 20}1] (SN 2]) }

o _ x(x—w)? _ ¥(xP-2ux+p?) Y x* 2uyx | yput_ yx’ nu® _ Y x’ 5
0f=="—""= = — + = —2up +—= — U
n n n n n n n n
GRS
H n /n
22 747} ZFO =N =
S8 A% A ool 310 e — 2120l 3 9% 218
o2& Tot7| fl3t #/8HA] OFef AJof T 215t0f OT At
OIX} Zfot 3 22
PSR — ¥
25 25 XX = 625
32 32 XX = 1,024
27 27 X*x= 729
45 45 XX = 2,025
39 39 XX = 1,521
21 21 X*X= 441
51 51 X*X= 2,601
46 46 X*X= 2,116 A C A
sum= 286.00 n= 8 sumSq= 11,082 sumSqg/n (sum/n)=u u*u =A-C
BHAZb= | 107.19 | u= | 35.75 1,385.25 3575 | 1,278.06 107.19

“oS. T H 3 AR R] AN Of Of
\‘\p ctice Coalitio leErn(I:nSI-E

32 YISOl MK

e S A A S AT LT TN 18 e

""Algorithm

B nia: variance ;o (2omE) |

C

25 25 25 X*X= 625
32 32 32 X*X= 1,024
27 27 27 X*X= 729
45 45 45 X*X= 2,025
sum= 129.00 sum= 12900 | n= 4 | sumSq= 4,403
SAgr= 60.69
39 39 39 X*X= 1,521
21 21 21 X*X= 441
51 51 51 X*Xx= 2,601
46 46 46 X*X= 2,116
sum= 157.00 sum= 157.00 n= 4 sumSq= 6,679
2= 129.19
task A "ELAFZETS 60.69 sum= 286.00 | n= 8 | sumSg= | 11,082
task B "2 A7t = 129.19 A C i
sum(task A + task B)= 189.88 sumsSg/n | (sum/n)=u u*u =A-C
Fe Z(sum/ 2) = 94.94 1,385.25 35.75 1,278.06 107.19

W Practice Coalition for Information Socie

¢ A AL 9] A v
Page = 50 \‘J!i'ﬂ b21 AN o of

=
A=
= _
S KO
0 N
M [
=
]
104
gl
Sl
=
)
0{0
-
o
&
(D]
=
~d
=
10
= <l
KO Jld
< | . ~
5 | Ko
A0 | ar - . ol
T N EEEEE 0
o] 15 20| | 20|| 5| 20 H
Z = o o o o @« T,
H = == [BE >3 KO
<l | 2Zr 1M 3 IH <3 -
. b
1 TR zl zl - r
o S=l IH
« B

2 LLH

N H 9 A 21 Al N o of

(]

Practice Coalition for Information Society

@N

Qg

Page = 51

g
1| OF1 EIE di7q 11 I'TH
._L 21-Ha =2 o
Associatio T : ® Onc
A n = : Apriort DHP, Sampling
L 5 N: (O I AprioniTid | Bavetion FUP
e~ g
= ® ® o o o
Clustering| S PANL, CLARANS BIRCH CURE OPTICS,ROCK
Y CLARA :
-~ : pBsCAN @ @ DBCLASD,
B : : DENCLUE
................................ 1_.................................:.....................................\......................................
Decision : : RamForest
Tree CHAID, CARTC*.* : SPRINT @ BOAT
® : O b ®
Neura ; ARTC) ® : :
\'c:\\'orlk A.RI(.\) Pmmp“ » P;\ GRNN SOAM(Kohonen) GANN
REF @
e @
: : [) .\Iulul:r of experts
; Generalized @ @ Linear Regression :
Bayesian linear model : :
Network @y @ Quasi-Newton methodls
B Markov Chain @ Glbbs sampling :
Monte-Carlo methods 5 :
seneltic Genetic algorithm Parallel Distributed Genetie algorlthm(?(;,\)g RPRCRLS
Geneti & Panl e ! : LONGENPRO
o senclic 3 - - .y ~
Algorithm algorihm(PGA) | @GABIL, GA-KNN .g,‘,\w.\ ®cicar
................................ TR, 2 b s L A . . S —
& Memory-based :
Misc. : reasoning :
- - = »>
1970 ~ 1985 ~ 1990 ~ 1995 Year
1§ 2 A4 diojelvield targ|Fel M g} AR
Page = 52

4 Data Mining

Top 10 Data Mining
Algorithms

1.C4.5

2.k-Means

3.SVM(Support Vector Machines)
4.Apriori

5.EM(Expectation Maximization)
6.PageRank

7.AdaBoost

8.kNN

9.Naive Bayes

10.CART

=X : IEEE ICDM December 2006
S N H O A 3] AN Of O
\‘ chli(c Coalition for lnqunatli:n SI:cicE

,41 Data Mmmg

TG

-
X = .
BE =m0l 2 pataMining M2 Wy |
=% =4 7 29 RESF
= = Ao HIOJHZRH HEo| 5d= Aot e
Oﬂ_ = - S| EM, OAFAXN LS
bredictive A 2RoH2 uso WS PR His ATl S oS
PN . E_L_jltH L O oOoOT 1/
deli Classification ol=dt= 7| o MAIOF D A=
Modeling - SE0P|Y L 22 AHIIRY So| ¥8 eSS
= OojE{e] AL £EE 2451 R 72l 282z
ClolH =& 28t 71y Clustering
Clustering " (ZF FASHL 2 MCH4 HIO|E 0 AntE0] Bl
- WEZEO|L O[ME AN 28
olmax | " ClolE{0l Exlist= SF7te| BAE &ot= 7|
A'—“. t'_l » NEO|Lt MH|AQ| mXHEOY(Closs Selling), BH& XY, | o H 2 A
Mo ssoclation AHZ7| ™ EH(Fraud Detection) S0 =&

Descriptive S AHM
Modeling .

N E=EN A2t 2o AlZE7HE0| HEE 7|
=TT . 2 g 0b| g (Target Marketing), 7HQISH AH|A S0 | Xt E £ A
Sequence ;}Rflo(9 9), 7H 2zt MH|A SO Hf & 2 A
= O
AZE =4 = HIO|E{2| &S ke EAE ujdst= 7| Social Network Analysis
Link Analysis = ARZAL RN, dEES SOl 28 Relational Content Analysis

* 4 AL B A L
Page = 53 @6 g2 adndy

Practice Coalition for Information Society

4.2 Classification rules 4 Data Mining

e S A A S AT LTI TNTICN 18 E e 54 14 4

2= H3l(classification rules) }

rl—lﬂ

& Decision trees : zt w20 Mg} 22x 22
= D3 (Iterative Dichotomiser 3) : 23 o|=H4 0| X| &2
= (4.5 (successor of ID3) : Y=2& o= CHK| 22|

» CART (Classification And Regression Tree) : X|L|X|£=(Gini indeX' HEH B2 H
CE = ALl ZbA2F(variance reduction: &3 2 HEHA0| ML) 52 0|83%10] £2

= CHAID (CHi-squared Automatic Interaction Detector)

& Neural networks : zH 20| 7}SX|2 AIR, 2282 A||(RQLES X|A)2 3}
= multi-layer perceptron

€ Genetic algorithms

€ Linear classifiers
= Logistic regression : SEHSLZ HEHD (MY QS 5) Al
= Naive Bayes classifier : H|0|= ™ 2|(Bayes' theorem)S 7|gt9| Ctast 28 25 (AHH Q)
= Support vector machines : 2582 %[0, 55 FE5l= 7|20)2 |z}

€ Kernel estimation
= k-nearest neighbor(KNN) : 7|#| st&o| Ui =of 7pEH ZHEESE Hh = &L}

€ Bayesian networks

&

=0 H8)

r|r

A [

HS 7|8t

- T H 3 AL QAN o o
Page = 54 @N ° e L

i ation 5

4.2.1 Decision-tree 4.2 Classification rules

) (
._L Decision—tree Classification]

C 4.5 21 2|Z9| Al E 21| X|4=(Entropy index) = Age < 27.5
O E20M R H AESAZHS AHES=
QO 2, O X|=7} 7} A2 oS82 1 [9|
z[& =Ze[of ofsl OtE| & 4 -d

CarType € {Sports}

Numeric Categorical

Age < 27.5 High Low
Age=40, CarType=Family — Class=Low

0 23 Family High

1 17 Sports High

2 43 Sports High

3 68 Family Low

4 32 Truck Low 1) Age < 27.5 = High

. 8 2) Age >= 27.5 and
5 20 Family High CarType = Sports = High

3) Age >=27.5 and
High Low CarType # Sports = Low

T, T 2 ALZI A Mo o}

age = 55 .‘\ Z2LLH
5 Practice Coalition for Information Society

4.2.2 Neural Network . o Classification

) (
._L Neural Network]

CHAIE21 A9 LK Multilayer Perceptron)

10
2

wiw dats- mining, co, kr

-~
@6 g2 adndy

Practice Coalition for Information Societ y

Page = 56

423 Kernel Estimation ~ler s

LTI B £ : AR R KX A == AT 5 — AR TTERIICR 10, C3 e b b e £ AT BT XY TR ICR T8 e Ak i3 e A

4
._L Kernel Estimation

CNN model reduction for KNN classifiers

'x‘:’.: HEC R 3 . .' s °
.'_' . o ‘- ;
:‘ .' ‘2.}. o Y) :
e Ty O
Fig. 1. The dataset. Fig. 3. The 5NN classification map.
*
ﬁ‘: . " o* on "] o
o .:. :.. . Wl . <,
LR . :x.
® ..o .' ‘..} ® : i
N . ’
n . S . ‘.: . -
Fig. 4. The CNN reduced dataset. Fig. 5. The 1NN classification map based

on the CNN extracted prototypes.

T ™ ALD AN Of Of
o ELLH

Practice Coalition for Information Society

Page = 57

4.3 Clustering Rules 4 Data Mining

e 54 A A L AT RLTTTAT I 8 E e 4 13

.| 29 Al (clustering rules)

=S
—

€ Connectivity based methods

= Hierarchical clustering : Linkage clustering

= CURE(Clustering Using REpresentatives) : H| 71 2%

= Chameleon : M0l REIS Oo| 25t =A%

v CUREQf DBSCANECL} E2 522 oAl HEQ| &, CiXtE Al O(n?) & E

€ Centroid-based methods

» k-means(E+4)), k-medoids(Z4)), k-modes(X|E1Z)
€ Distribution-based methods

= EM(Expectation maximization)

€ Density-based methods
= OPTICS by using an R-tree index : #3& #+& AlHZ 2|0l =A|3}
= DBSCAN(Density-Based Spatial Clustering of Applications with Noise) : 2 & 7|Ht
= DENCLUE(DENsity-based CLUstEring) : 2= &3 ot 0| &
€ Grid-based methods
= STING(STatistical INformation Grid) : SAHNEE 4dX} 0|
= WaveCluster : g|O0|=2a HzIZ 0|&
» CLIQUE(Clustering In QUEst) : 1 Xt =57t &3}
LR R R L

= H
W™ ;iice Coalition for Information Seciety

Page = 58

4'3'1 conne‘ctivitv based

A (
._L Connectivity based]

Linkage clustering examples

TR T .f..... '. 1eu e,
LI, B
- - - .

_— ey) ..': 3 - . .P

tﬁ"?"?-. o AR

oty -_l.l ~

s _: et :

Single-linkage on Gaussian data. At 35 Single-linkage on density-based clusters.
clusters, the biggest cluster starts 20 clusters extracted, most of which
fragmenting into smaller parts, while contain single elements, since linkage
before it was still connected to the second clustering does not have a notion of
largest due to the single-link effect. "noise".

«
‘e M H ZHAF R A A O Of
Page = 59 D\ chli(c Coalition for 1nqunmIi:n SI:cicE

4.3.2 Centroid based .~ A3Clustering rules

!:[Centroid based]

k-Means clustering examples

K-means separates data into Voronoi- K-means cannot represent density-based
cells, which assumes equal-sized clusters clusters
(not adequate here)

-~
S N B 9t Ar D] Al A o of
Page = 60 O\ chlice Coalition for 1nﬁEnat|i:n sI;cieE

4.3.3 Distribution based | 43Clustering rules

) (
._I\ Distribution based]

EM clustering examples

On Gaussian-distributed data, EM works Density-based clusters cannot be modeled
well, since it uses Gaussians for modelling using Gaussian distributions
clusters

-~
S N B 9t Ar D] Al A o of
Page = 61 O\ chlice Coalition for 1nﬁEnat|i:n sI;cieE

4.3.4 Density D?SBU

4.3 Clustering rules

v :
._I\ Density based

- i
.o ,b. »
" ':‘.f':}'\-
: A
= ;.- h ¥ l‘:
J’.hu . : 'ﬁ“‘;
M w0 1 :"t'::
| 'ﬁu'.’: R
v ‘" ;'” ‘. :{{!- :*
‘ : ‘.l?ﬂ' .
iR
) -‘Jh‘.'.:‘ o

Density-based clustering with DBSCAN.

Page = 62

density-based clustering examples

e 8 .
.
. .
.-
F
-4
. ® »
. 2 .
-
. - i
-

DBSCAN assumes clusters of similar
density, and may have problems
separating nearby clusters

T
o 4 .
R
. wg
o T T

OPTICS is a DBSCAN variant that
handles different densities much better

T ™ ALD AN Of Of

QN ° ELLH
Practice Coalition for Information Society

4.4 Association Rules . 4nData Mining

e S A A S AT ROLTTTNTICN B e 4 4 A 055

. A A1l (Association Rules) J

=1

€ Apriori Algorithm
= Apriori Algorithm
= AprioriTid Algorithm, AprioriHybrid Algorithm
» Eclat Algorithm (depth-first search algorithm)
= RElim Algorithm (Recursive Elimination Algorithm)
€ Pattern-Growth Algorithm
= FP-Growth Algorithm (Frequent Pattern Growth Algorithm)

T

L7\ I{E (sequential patterns)]

€ Apriori Algorithm
= AprioriAll, AprioriSome
= DynamicSome
» GSP(Generalized Sequential Patterns)
€ Pattern-Growth Algorithm
= FreeSpan(Frequent Pattern-Projected Sequential PAtterN mining)
» PrefixSpan(Prefix-projected Sequential PAterrN mining)

Wy N A A
Page * 63 L N ot g

r Information Socie

~4.4.1 Apriori Algorithm

4.4 Association Rules

: b i 5 AT LTI TAT IO B S

T

2 (
_I\ Apriori Algorithm

| —
g2+ | x84 |xgo MY
1,000 2 499,500 null}
1,000 4 41,417,124,750
1,000 6 1,368,173,298,991,500
1,000 8 24.115,080,524,699.400,000 A B C D E
1,000 10 263,409,560,461,970,000,000,000
AB AC AD AE BC BD BE CD CE DE
ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE
ERNM do|EjHolA D c1 EL XKL =2 L1
o, = 22 XX|E =
ol
=) 7
ABCD ABCE ABDE ACDE BCDE
e
spol
=
g S ABCDE
8 Xgt Cc3 Cc3 *‘f?_' L3
-
Page » 64 g2 AR A Y

Practice Coalition for Informatio

n Socie

H
ty

4.4.2 FP-GROWTH Algorithm

e S A A S AT LT TN 18 E e o4 13

A
B PARALLEL FP—GROWTH : Mahout |

Input Data
see -
-------- |
1
Map : Fmm————————
1
v |1 & 2 sharding s
-------]
_______ . | and Parallel 1P CPUS
1 1 | Counting 4. Parallel
: Reduce : and
' ' Self-Adaptive
: _ : e e = m= =W : FP-Growth
1 F t List 1
! requent Lis _I:J
- 3. Grouping
Group List ltems
v
| New Integrated Data
- ———————— Aﬂ __________ . 5. Aggregating
Figure 2: The overall PFP framework, showing Five
stages of computation.
" N E 3 AR AN O Of
Page = 65 @N° 2LLH

Practice Coalition for Information Society

4.4.2 FP-GROWTH Algorithm

£
B PARALLEL FP—GROWTH : Mahout |

Procedure: FPGrowth(DB, &) Procedure: Growth(r, a, §)
Define and clear F-List : F]; if r contains a single path Z then
foreach Transaction T; in DB do foreach combination(denoted as ~) of the nodes in
foreach Item a; in T; do Z do
Fla;] ++; Generate pattern 3 =+ U a with support =
end minimum support of nodes in ~;
end if B.support > £ then
Sort F[|; Call Qutput(3);
Define and clear the root of FP-tree : r; end
foreach Transaction T; in DB do end
Make T; ordered according to F'; else
Call ConstructTree(T;, r); foreach b; in r do
end Generate pattern 3 = b; U a with support =
foreach item a; in I do b; .support;
Call Growth(r,a;,&); if B.support > £ then
end Call Output(3);
Algorithm 1: FP-Growth Algorithm end , N
Construct (3 s conditional database ;
Construct /3’'s conditional FP-tree T'reeg;
if Treeg # ¢ then
Call Growth(Treeg, 3, &);
end
end
end

Algorithm 2: The FP-Growth Algorithm.

« ~ A A o
Page = 66 @6 g2 adndy

Practice Coalition for Information Society

4.4.2 FP—G‘HOWTH Algorithm

._' PARALLEL FP—GROWTH : Mahout]

Procedure: Mapper(key, value=T5}) Procedure: Mapper(key, value=T;)
foreach item a; in T; do Load G-List;
Call Output({a:,"1")); Generate Hash Table H from G-List;
end af] « Split(T:);
Procedure: Reducer(key=a;, value=5(a;)) for j = |Ti| — 1 to 0 do
C—0; _ o HashNum «— getHashNum(H, a[j]);
foreach item .1 in T; do if HashNum # Null then
endc — C+ 1L Delete all pairs which hash value is HashNum
Call Output((null, a; + C)); gj ’
Algorithm 3: The Parallel Counting Algorithm Output((HashNum, a0] + a[1] + ... + a[4]));
Procedure: Mapper(key, value=v + supp(v)) end
foreach item a; in v do end
Call Output((a:, v + supp(v))); Procedure: Reducer(key=gid.value=DB,,)
end Load G-List;

Procedure: Reducer(key=a;, value=5S(v 4+ supp(v)))

- nowGroup — G-List,id;
Define and clear a size K max heap : HF:

Local F'Ptree < clear;

for?acll pattern v in v + supp(v) do foreach T; in DB gid) do
if |HP| < K then) Call insert — build — fp — tree(Local F' Ptree, T;);
insert v + supp(v) into H P; ond
else)
if supp(H P[0].v) < supp(v) then foreach a; in nowGroup do

Define and clear a size K max heap : HP;

delete top element in H P;
Call TopK F PGrowth(LocalF Ptree, a;, H P);

insert v + supp(v) into HP;

end foreach v; in HP do
end Call Output({null, vi + supp(vi)));
end end
Call Qutput((null, a; + C)); end
Algorithm 5: The Aggregating Algorithm Algorithm 4: The Parallel FP-Growth Algorithm

« ~ A A o
Page = 67 @6 g2 adndy

Practice Coalition for Information Society

4.5 Link Analysis

e S A A S AT LTI TNTICN 18 E e 54 14 4

i
B v oo =

L

—

rR
£
m
HT
1%
R
®)
-
—
Q)
>
—
>
>
o
<
%)
@

-
| >
!
Ju
10
N
>
Ul
Hi
fe)
N
Ho
rot
ot
I
10
0
IO

o HIY HO|E|ZEE o|0| Yk WEE xH}Y| 50f QH0jH B2
Sof 20| 28 + U Hejol HO|E 2 Bt

Ofm

AN 71g AN N2l S GBS

= AAIZE 2 M (Real-time Analytics)

o 2aot 2= HO|HE &850 AFEXZE 242 =5t 5t= A0 =20 HA|0| X|AlS
= A=z 24 7|8
gt S M| O AP AU A 24 ZA0E HAIO HE5te Ao FetE S 7H

O g 0ol E(Web Mining) IHAYONM =& e S2E HOlH 00| ez Z45t= 7|8

O A 010| Y (Social Mining)

N _ . AFZHS O] S =Tl E | T D E P2 ARSo] SAsE
Al O | o= o o — — — i O = T d (L | [
Oue BolsRealty Mining) | 51502 duumol Bashs BRS Jluioz ZiErL 3E %2

b N A A -]
Page 68 G e rEynay

Practice Coalition for Information Society

4.5 Link Analysis

,
. | Content AnalysisO| =& }

Source Who Answer question of disputed authorship

viake inferences « Secure political & military intelligence
about the antecedents Encoding

. Wh » Analyse traits of individuals
S R process y « Infer cultural aspects & change

* Provide legal & evaluative evidence

* Analyse techniques of persuasion

Channel o5 - Analyse style

* Describe trends in communication content

 Relate known characteristics of sources to messages
they produce

» Compare communication content to standards

Describe & make
inferences about the Message What
characteristics of
communications
* Relate known characteristics of audiences to messages
Recipient To whom produced for them
* Describe patterns of communication

Make inferences

about the Decoding With what
consequences of process effect
communications

* Measure readability
* Analyse the flow of information
» Assess responses to communications

ZX : Ole Hoisti, Duke University

R A g A o
Page * 69 no aMAdNEY

e S A A S AT RO TN 18 e 4 4

4.5 Llnk Ana|y3|s | 4 Data Mining

L 22 (Link Analysis) }

2ot

€ Social Network Analysis 8l Relational Content Analysis
Atz| =& £ E(node)2t OIE LEE W0l GAZ Fdk[= BES(network) 2=
=4, 0|5 7_+9| MSEEE AHESs| T 24 7|

= X0 X 2|(Natural Language Processing)
= SEARAM
= pEEA
= Algorithm
= 12 O|E(Graph Theory)
= & /vector/matrix ANOVA &

= JtA|2}(Visualization)

- Mg gy
v Aot dE 2o 24 (.7:.*%17(}, U= E, ZEd d=5=E3)
v H[ZEL|A:OtORE ZA) QFLY *1HIA(—?LUHIP/*” LE, Hefde=E3)
v EAAY: EAAE Al ERo] 87 (TA|=kE, A=23)
T R e D gyl
v ZAEE : OIEUl (HEE, AfR2t=C, EAIM=2|3T)
v ME|S oty TEVE =W (W EF HES=2E, AE=E3)
v A XY 28 GRRIRA =L, XAB Q=)
Page * 70 L bl 13

e S A A S AT ROLTTTNTICN B e 4 4 A 055

4.5.1 Natural Language Processing 4.5 Link Analysis

A
._lk Natural Language Processing J

& Xpotof K2zt

= QIZEe] AIO{E 7|A7F OlaKst g = A== ot7| flet A+

(
B ool nage) ays |
L
ey] @aass) [72 207 | =
A

\ NTH

U Mo

(Knowledge—Base)

N T

CiBl(discourse) 2|

ojo| 2|

)
i
[0
o=
[0
o=
02
02
=

oo ™ H 3 AL 9] Al A of Of
Page = 71 \‘\ chli(c Coalition for 1nf.Enmli:n SI:c'\cE

.w !
n
=
")
o
S5 |
-
-m

ol
Jld
H
i)
i
< —
K] N
Y 3F
< Y
= S
u_n_/_”_% uA_M
= ok o 7l S
e — mL.Aﬂl ~Nd _
% _mun_e N <r K
0|J - X A_l —_
Q g0 WoomE oy T
o SHGL -]
— = = 50 . & ° o . O
Q. o_|+A+A|x_mm__._|Ma 55
@ _.._J4._.=4._.=7EA_.%|.L%MWE
(o)) _— KR = =3 x i 3 x o
K & & X o &
0 e = KO =
s ﬂ_MM_/DTm_.ﬁ.Ij&A_.
o 4 A_:_Eo_eo_uﬁﬁmﬁia___
3 T E T oT T
m —_ m_._._.__._._._m_A o_aoao_/FaoaoaH_
S ey clmm X0 @l K RUOIT
= (B Em ymrag ewk
mm me:T+o_u:_._nX®®o_@@W
= I ISR L U " LI
Q | oy
Nwm% * * *
r. g
o
i
:

a{ A Xt

o
=

Ej 27| 2] Of

o

= 3
—

(o)

Page = 72

4.5.1 Natural Language Processing . 5 Link Analysis

-
._Ik Grammars and Parsing J
& 2 (Grammar) :
= O FxH JEE iz EASH A
& 12 EAM7| (Parser) :
= =Y 1= E =¥S 0890 XOtLf= process
= 2O & F &= TreeF O|EL} &, HIHQ| HEfASO0| 20N L& R4 (phrase)&
0|21, 1 P2 RAE0| ZHTEE TreeHEIZM T2 TZE 0|2 A &Lt
/S\
N|P VP
N /NF)\
V ART N
| | |
John ate the apple
Page * 73 L I i

4.9. 1 Natural Language Processing

e S A A S AT LTI TNTICN 18 E e 54 14 4

| ICCTEE
L

1

"7 el 2578 AHellZ2 HiXL T4
SEE 2011H 32229)

QULE" (2

CH21 & 2

Page = 74

CH2 & MNG+2[AIKG
S/XPN+EE/NNG
Hel/MNGHE/IKB

HIH] MNNGHLEIC

S 42| BANNGHO|/IKS

d ENNGHSE X SVHR/EC
ShAK+/EC
IFMNG+HE HMNG+HH]AIKEB
P E/NNGHEAKO

Hq =AM+ /EC

IR HCHEC

A

o
=
e

S omr 12 M

7| 0| d&0otX| Zot1n

nk Analysis

27 EH o ta

NNG Lt AL
NNP nk=1=:P\}
NNB O|=H A}
NP CHT A
NR E\
Y EA
VA HEA
VX 2Xx8N
VCP SR A
VCN SE-RIGA
MM ZHH AL
MAG YUHEEA}
MAJ HEEA
IC ZERAL
JKS =AM
JKC BAXM
JKG HHARA
JKO SX™ZAZA
JKB BALZ T A
JKV SAXM
JKQ I8 HZAL
JX CEINS
JC SEE IV

Y ME A" A

gs =281

EP
EF
EC
ETN
ETM
XPN
XSN
XSV
XSA
XR
SF
SP
SS
SE
SO
SL
SH

SW

NF
NV
SN
NA

|y

»

Hdo{2ron|
x?:lo.lﬂl
AZon|

YA Fofo|
g Tgoln|
M A F A
SALTHY HOJAL
SAHTHS G O] Ab
S E AT O| AL

oz

Ol s88 =248
x5, 7I2EE & s
2H ZUsH 8
SAE

=UH(EZ S, W)
Q=04

SEX}

7|Et 7|Z2 (=2 87| 2,
oth 7|12) &)
FAF=EH T
SoAFYHF

=Xt

2EMESHF

N H 9 A 21 Al N o of
o ELLH

Practice Coalition for Information Society

4.5.1 Natural Language Processing . 4.5Link Analysis

-
T [|
._L-_rl-.'_- e]

“EH7I% O 258 HellE "IN L SA7| 0| &K XSt 17180 S4=etE =281
OICH'(AZEE 20114 32229)
P.q.
U UL} W: Q! E:C}
_2pen VEHQEL
O Yz=2t= N:2t=2t)3
B =71& |0 N:=7+Z A J:of
_ ot JJ23SED
_ SESHA V835t EX|
S=A7|90| N:ZA7|¢ J:0|
| B Lt N:BIX J:0|Lt
B Halz NZE R
N =378 N:=378
GLOi7|&ol N:CH7| J:of
v v
Lt 0j2 1 Mot At a5 || oxs opitCt GEE:)
1 1 1

\ H
P ctice Coalition for Information Society

@ 7~ A o
Page = 75 \‘ | H 3t AF 2 Iﬂﬂ I

4.5.2 Graph Theory

e S A A S AT RO TN 18 e 4 4

.Ik Graph Theory }

€ Node®} Link

= Node : AtE, W=, ArE, 71 E

= Link: 282, 4, #A(R=H, H|R=H), o[AtAE, TOjeF F10f &
& A== E(vector)2} Sl & (matrix)

= scalar: SlLIC| 4r2 2 0|20 Xl G|O|E{. Ex) Likert 3, 0, E<2l 849H

= vector : StL{O| HIE 2 O|FO{ Tl O|O|E|. Ex) x={xy, X X3,...}

» matrix : 08 == A2 DOl 2Xlo 2 HiEst O|O| .
v Ex) m(&i=row) X n(&€=column). m=n (‘A& H=diagonal =X|)

= A L V(R AE 2 VA SH, dF 7F At At S

€ Mode of Matrix

= 1-mode network: =& HIE 70| MASXt&
v 1~n7HX| t&AE 2t 0| M HEYA / BHX 7 ¢1F Y EYA

= 2-mode network: O| &l HIE 70| AlSXt&
v SHEXIQF ZEHIX £ oA WIE 7H AS

{ 4 AL B A L
Page = 76 \‘\\ Jl] rgllelﬁﬁhfr

e Coalit i ation 5

4.5.2 Gra h Theory r Link nalysis

e S A A S AT LTI TNTICN 18 E e 54 14 4

.l e mdt(measures)

gt
~—

‘ = (Node) ‘ ‘ =l 3 (Link)
» HZAZH E(degree centrality) » 33 L (density/centralization)
v Zf nodeZt 11 QU= linkQ| 7%= v EXNY = Jes 7tsTt E linke| ==X} CHH|
= 7{2|F A E(closeness centrality) HAE link =X}2] ng
v' ol node®} CIE B E nodeZto| WHA QI » A= (cohension)
Z[EH 327 v HEYA W 2= nodeS0| Z25H7| #I5H
= O§7f= Al £ (between ness centrality) Zest 8390 & otA, & 42 HE|(path
v 3t node 7} C}2 B E nodeS AMS7H9| distance)
ZAZ AFO|O A EfO 55:: S5tQ 1= E719] = EX|ME|CHEA7{ 2| (geodesic distance)
OIAHEO O HE HESHA HZEAA v 2= node?to| Z[EH Z=AHE| (cf.
=2 Mg Ha|=AlE)
. 7|Ek power, effects, eigenvector, status & » S EEF (component, clique &)

v UEYD Y EXfsHe SHITE B
» JAZM QA (core-periphery, block model
S)
v He| HEQAZI ME 2XXo=Z2

 —
=
A HE

—

oo ™ H 3 AL 9] Al A of Of
Page = 77 \‘“P ctice Coalition for HEmI:nsLE

4.5.2 Graph Theory I 45LinkAnalysis

._l Graph Theory (0fl)

dESHE
Degree centrality

/

S 7 H 3t AL 3] AN Of B
Page = 78 mp ctice Coalition for 1fEmL s':(.f,'

- 4.5.2 Graph Theory

[
._I\ Relational Content Analysis]

-

e 712l 4 HOlE 2] Social Genomes ERE0| 228 &A=

B/l

(5 efar213 : El=ai=yt @ sick (o] ofar 213 : L 4E Fofs

=2 htp://www walmartlabs com/social - genome/

S ™ H O AL DA N Of O
[] L L

m Practice Coalition for Information Society

Page = 79

452 Graph Theory

| - 4.5 Link Analysis
._L Relational Content Analysis

<J8 5 ohFe| AZER O X T
gg}, _
Zde s, ’ o225
%ol
2.
HXA o JQ.\
z 2 —eZAR #BE tin@mari
s ot =28\ 3 . ustin@@maris
® %-’—i"‘ 4 4" 20 " te ans‘g hes$216
HBY gs As). =%, L b S ey ‘Qloﬁ9
ARl 210i g | ¥ ;' N gt
B o N o FUEA e .°-7'-'~ omolisd .,
g LZEHOf * “oGIOIE ' un‘nnolly jsradllytan 1" "’-"a'
aay o 012121 o °L_ iR e o e
o Ieverop,‘léa johrfand S
"_"Xi. m ..,"' s _4‘.
o1 “?ﬂ AIIanEQunosa o st %
MERHY L3S A,
=X S0tAL 7|A} Al g s, _ ™
v
, I:’rtﬁoar ol g .,.d
am an em‘ng !
Ti719e] B3 A2 WL Ba]%0l Hu s S R
- " - ~ s
xotd Z7HEN0f Sets E2(1 UL (H2EE ra"&_la :
20111'5 3%22%) Mlllc nnjlhlll-l
Page = 80

Qg

N A A -]
L et

LTI £ HREETIE— P,

T ™ ALD AN Of Of
o ELLH

Practice Coalition for Information Society

Page = 81

